
Visual Design Problem-based Learning in a Virtual Environment
Improves Computational Thinking and Programming Knowledge

Amy Banic* and Ruben Gamboa**
University of Wyoming

ABSTRACT

In this paper, we present our design of a high school summer course
which uses our Visual Design Problem-based Learning Pedagogy
using Virtual Environments as a strategy to teach computer science.
Students solved visual design problems by creating 3D sculptures
in an online virtual environment. These creations were further
explored and refined in immersive display systems fostering
embodied learning and remote peer presence and support. To
achieve the desired design, students use programming and
computing concepts, such as loops, to solve those visual design
centered problems, i.e. solving for composition, positive/negative
space, balance, as opposed to computational problems first, i.e.
create a loop, a fractal, randomized lines, etc. We present results
from a study conducted on three high school summer courses. We
compared the use of our Visual Design Problem-based teaching
strategy (students wrote code to solve challenges based on art and
design principles) to a traditional strategy (students wrote code to
demonstrate comprehension of computer science concepts). Our
results showed that test scores were higher for students in our
Visual Design Problem-based courses. This work may have a
positive impact on computer science education by increasing
engagement, knowledge acquisition, and self-directed learning.

Keywords: Visual Design Problem-based Pedagogy, problem-
based learning, Online Virtual Environments, Embodied Learning,
Virtual Sculpting, Increase Programming Knowledge, Spatial Art.

Index Terms: CCS [Human-centered Computing]: Human-
computer interaction (HCI)- Interaction paradigms- Virtual
Reality; [Human-centered Computing]: CCS Human-computer
interaction (HCI)- Empirical studies in HCI;

1 INTRODUCTION

While others have been successful at combining fine arts and
computer science to promote learning [1-3], to our knowledge little
work has been done in using art design principles as the primary
focus for problem-based teaching methods to foster self-directed
learning in computer science. To demonstrate our idea, we
developed a summer course, “Generating Art in a Virtual World”,
as a part of the larger outreach program for the University of
Wyoming High School Summer Institute (UWYO HSI). The
primary objective of the course was to teach high school students
introductory computer science concepts and skills. This includes
topics such as primitive data types (e.g., numbers, words, or
images), data records (e.g., a ball composed of a position, radius,
and color), recursive data types (e.g., lists and arrays), functions,
selections (e.g., if this happens then do that), loops, and iteration
(e.g., do this to each element of a list). Furthermore, to achieve our
goal, we used an Online Virtual Environment (OVE) since it
provided students the capabilities to create and manipulate 3-
dimmensional visual creations using computer programming code

that provided additional spatial information. OVEs are a type of VE
that allow participants to access a virtual environment and connect
with others all remotely through the internet [4]. They used this
OVE to develop and program their 3D sculptures and designs
through a combination of desktop, head-mounted displays, and a
CAVE system [5]. Further, since UWYO HSI high school students
are spread out across the state, it makes for having a supportive
cohort to learn programming difficult. We sought to provide an
accessible community that connected students with each other and
foster small group peer learning, which has been shown to improve
learning in STEM fields [6]. By using an OVE, students can have
access from their homes, especially in rural areas like Wyoming, to
continue embodied learning in the virtual environment and with
other peers. These OVEs are 3-dimmensional (3D) environments
that can be made more immersive through a stereoscopic display
technology, i.e. a head-mounted display or a virtual reality viewer.

Figure 1: Example of creative 3D Spatial Art in an OVE.

The objective of this work was to determine if problem-based
instruction using art and visual design problems, as opposed to
computing problems, would engage high school students in self-
directed learning and increase programming knowledge.

We hypothesized based on the self-directed learning literature [7]
that students would be more engaged by the art challenges (as
opposed to using computer programming problems) and increase
self-directed learning of the computer programming concepts. In
this paper, we present results from a study and data collected from
three courses about students’ knowledge gained. We present the
materials, lessons, and activities of the course. We utilized
problem-based instruction methods for all courses. In one course,
we provided problems that focused on the computer programming
concepts (a traditional teaching strategy). In the other two courses,
we used a Visual Design Problem-based teaching strategy where
we provided problems that focused on art and visual design
principles, such as composition, positive/negative space, color,
space, form, lines, balance, etc., and related ideas from generative
art (Figure 1), such as randomization and repetition. For courses
that used Visual Design problem-based learning, we observed that
more students exhibited self-directed learning to find programming
concepts that fulfilled their creative vision, than students in the
course where we used computing problems. Our results showed
that students learned more computer science knowledge and
debugging skills with Visual Design Problem-based Pedagogy than
using computing concepts as a strategy for CS instruction.

{*abanic **ruben}@uwyo.edu
,

1588

2019 IEEE Conference on Virtual Reality and
3D User Interfaces
23-27 March, Osaka, Japan
978-1-7281-1377-7/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 21,2022 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

2 RELATED WORK

2.1 Problem-based vs. Inquiry-based Pedagogy
There have been many solutions that have been shown to improve
attitudes towards computer science, engage students, and improve
computational thinking and programming skills [8,9]. Self-directed
learning has been shown to improve knowledge acquisition in
STEM fields [6]. Problem-based and Inquiry-based teaching
methods are of a set of teaching methods that have been shown to
foster self-directed learning [10-14]. Our idea combined these types
of problem-based teaching methods with art. To do this we present
design problems to be solved by students using art and design
principles, but while doing so fosters self-directed learning in
computer science (Figures 1 and 2). In figure 2, the programming
functions llRand (outputs a random number, and in this case
random position and color values) and llRez (generates a 3D object
in space, and in this case the triangular objects shown) are used to
produce the desired effect. Through this process of experiential
learning [15], students learn and connect potential results with
different programming concepts.

2.2 Virtual Environments for Education
Research has shown that online virtual environments have been

used successfully for educational purposes [16-19] but not
specifically for problem-based instruction, using art and design
principles, to foster self-directed learning. A previous study used
different gaming technology, as a medium for learning art
curriculum, game theory, and complexity thinking [20]. Students
used their personal experiences to create games in the form of
visual expression not programming. This study did not focus on
pedagogy that incorporated design principles to learn computer
programming skills, as presented in our work.

2.3 Visual Arts and Design Curriculum
The course lessons are outlined in such a way that the students

receive a combined curriculum of basic art concepts and basic
programming concepts, and during the course they learn to
combine these skills together through computer-based art projects.
We follow a model from visual arts where students go through an
iterative process of create-experience-reflect [21, 22]. In this
process for each lesson, concepts from visual arts and design
curriculum were selected for the problems.

3 COURSE DESIGN USING VISUAL DESIGN PROBLEM-BASED
PEDAGOGY FOR A VIRTUAL ENVIRONMENT

3.1 Platform and Virtual Environment
We used an online virtual environment to fill three important roles.
First, OVEs provide a platform where the students can program.
For example, students must program to create objects, which can
range from static images to full-blown, dynamic works of art.
Second, they created an environment where the students can
interact with instructors and each other, even after the UWYO HIS
program was complete. Third, they were able to archive the
students’ artworks and make them available to future generations
of students. Students’ final art pieces were showcased in a
persistent virtual gallery to be experienced in a Head-Mounted
Display, CAVE, Mobile+ VR Viewer, or standard desktop display.
Online virtual environments create a community that can connect
students with each other. We used only open-source tools that
students can install on any computer, including PCs running
Microsoft Windows and Linux, as well as Apple Macintosh
computers. We have used both Curiosity Grid and Kitely for our
OVE, where each have their own strengths and weaknesses but for
purposes of our methods both worked sufficiently. Both platforms,

and others available, are built upon the Linden Scripting language.
What worked well, offered by both platforms, is that we could set
up an individual island for each student as a workspace and then a
larger island as a shared virtual gallery. This model worked much
better for our course because it allowed for students to experiment
with primitives and not have the system slow down. We could set
permissions to allow students to visit each other’s workspaces but
not be able to change anything in the environment unless the owner
student permitted them to. The gallery analogy fostered iterative
design permitting multiple versions in a workspace and a formal
gallery space for finished pieces. A virtual world viewer can be
used to interface with these platforms, such as but not limited to,
Imprudence and Firestorm. This viewer permits the students to
interact with object with the graphical user interface and scripting.
Users gain instant visual feedback about what they change in the
code (assuming there are no programming errors). In each of these
environments, it is easy to create objects through a drag-and-drop
interface. A graphics user interface enables each manipulation of
properties of 3-D objects. However, the interface for writing
programming code is not drag-and-drop but not as difficult as using
a standalone compiler. Students can write scripts that are attached
to each object. Depending on an event with that object, such as a
“mouse-click” on that object, functions defined in the script will
execute. Some debugging features are available and provide error
messages if the script does not compile or there is some other error.
Since this platform was more widely used, we could connect with
other students across the nation in our virtual environment.

Figure 2: Example of creative 3D Spatial art in an OVE.

3.2 Art and Visual Design Problem Set
Five main problems focused on art and visual design principles.
Each problem took about 1-2 days to complete. At the beginning of
class each day, students were presented with information about the
programming functions and other code that would be useful to them
to be able to solve the problem. Students were provided the online
API and documentation as reference. The problems were focused
on 1) basic art elements: form, lines, shapes, color, value, texture
and size, 2) design principles part 1: scale, repetition, rhythm,
movement, hierarchy, and dominance 3) design principles part 2:
composition, harmony, unity, variety, and balance 4) design
principles part 3: positive and negative space, contrast, and
gradation, 5) final art piece. In lesson 1, students were given
instruction on the basic art elements and asked to create objects and
use both the user interface and the scripting code to modify these
elements of the objects. In lessons 2, 3, and 4, instruction and
examples were provided on each respective set of visual design
principles. Students were then asked to create a virtual art piece or
3D Sculpture that reflected one or more of those principles using
the programming scripts as much as they could. An example art
piece is shown in figure 2, solving for shapes, repetition, and unity.
In lesson 5, students were asked to focus on the design principles
we learned to create one final creative piece. They could build upon
previous pieces by reusing their code or learn new concepts. To
inform and provide inspiration for lesson 5, during our field trip to

1589

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 21,2022 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

the art museum, students completed a deep looking exercise that
fostered taking notes on each of the art pieces that mapped to each
of the visual design principles. They could use these notes to inspire
their own use of the principles. An example that resulted from this
inspiration is shown in Figure 3, where the art work displayed in
the museum consisted of paper boxes with these intricate stairs that
allowed for interesting lighting and showing effects.

Figure 3: Inspiration from local artists driving concept of this piece.

Figure 4: Example script to produce and rotate a virtual object.

3.2.1 Example Lesson in an OVE

In this example lesson, students are taught about positive and
negative space and asked to explore visual solutions to that design
principle. Students create 3-D virtual objects and write
programming code in the computer lab classroom. Students are
writing code to solve a visual design problem (Figure 4), as
described in section 3.2. An example visual design problem is
described in the next paragraph. Students will do this using the
interface of the OVE and writing programming scripts within the
OVE (Figure 4). The interface provides a window into the 3-D
virtual world displaying real-time updates and interaction with the
virtual world in first-person and third-person views. Side/bottom
windows are provided for viewing and editing scripts. Students
could directly edit their 3-D sculptures using OVE interface tools
and add scripts to them. Students worked during the week through
desktop displays but, once a week through embodied learning, they
experience and refine their creative works in the OVE displayed in
an immersive environment, such as a head-mounted display or
CAVE. For example, several students commented about not
realizing the size of different objects until they experienced them in
an immersive environment. Students refined their designs and it
changed how they understood the spatial components to improve
the design of their subsequent projects. We followed this process
of desktop development and immersive refinement through
embodied learning due to the limited number of immersive
displays. In the future, we could investigate if full-time access has
an even stronger influence on learning.
 One sample of a student’s Virtual Environment art piece/ 3-D
virtual sculpture is shown in Figure 5, where a student used
complex programming code to produce the specific desired creative
goals in positive and negative space. The composition of this piece
is complex as well as the color decisions and animation sequences.
In this example, a student used the OVE interface to model one
virtual character. Then, the student used scripting to replicate and
animate/rotate the other black and white virtual objects. The
program uses a loop, if/else statements, and OVE script functions
to accomplish the goal. The following describes the sequence of
programming code to produce the image in Figure 5. All black and
white character objects are facing the same direction before any

object is clicked. The full color character in the scene is the
primary/control virtual object and contains the primary script.
When the color character is clicked, the “touch_start” function
executes and loops the llRez function (Figure 4) to create each
additional black and white character. Then it passes a message with
a variable to each of the objects using a llSay function to rotate and
change color. Based on the value passed, it rotates around the y-
axis (up vector) by that amount and changes color using llSetColor.

Figure 5: Example of OVE Spatial Art piece.

3.3 Computing Concepts Problem Set

To compare to the Art and Visual Design problem set, we created
a problem set that would focus more primarily on computing
concepts first, rather than the creative work in a virtual
environment. There were five main problems given in the
‘traditional’ course, specifically related to generative art. The
problems used were focused on solving the programming
challenges first, instead of visual design challenges. Each problem
took about 1-2 days to complete. Students were presented with
information about the functions and other code that would be useful
to solve the problem. Students were encouraged to look up
programming code in the provided documentation and online API.
The problems focused on 1) random lines, 2) random circles and
spirals, 3) message sending between objects, 4) fractals of trees, 5)
generative art final project. For lesson 1: random lines, students
were asked to create an object that would generate a line in 3D
space when clicked. Students created two objects, such as two
spheres, one serving as a starting point and the other as a target.
When the start object was clicked, that object executed a script
which would produce a cylinder or multiple cylinders to create the
3D line. Lesson 2 was a variation on lesson 1, where they would
formulate random circles and spirals with the lines. Functions such
as llRezObject, llSetPosition, llSetScale, and llRand (to create
random directions) were used in lessons 1 and 2, as well as vectors,
variables, etc. In lesson 3, students were presented with the problem
using clicks to control the change in position, size, color, and other
parameters of the objects. In lesson 3, llListen, llSay, and
llSetParams functions were presented. We introduced if/else
statements. For example, to test for a set number of clicks and then
make a change. In lesson 4, students were given the problem to use
an object to generate a pattern of objects. For example, when a
sphere is clicked, two cylinders are produced in opposite directions.
When clicked again, two more cylinders are produced and so on.
The action could be repeated over and over, resembling a tree. A
variation of this was to have it duplicate copies of itself. Loops were
introduced in this problem. Finally, the fifth lesson, the students
were tasked with creating their own generative art piece. Students
could reuse parts of previous solutions or create a new piece. At the
end, generative art pieces were displayed in an OVE virtual gallery.

4 EXPERIMENTAL STUDY OF KNOWLEDGE ACQUISITION

4.1 Procedure

We taught a course, “Generating Art in a Virtual World”, for the
University of Wyoming High School Summer Institute (UWYO
HSI) using an OVE for three consecutive summer semesters, each

1590

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 21,2022 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

with a different sample set of high school students. As part of the
UWYO HSI program, high school students were selected from
Wyoming high schools based on their applications to the program
Students choose to participate in one science class and one
humanities class. Their daily schedule of the UWYO HSI program
is as follows: in the morning students attend one of those classes
(either humanities or science), have lunch, attend the other class
(science or humanities), and then have social activities and free
work time in the evenings. Approximately 14-18 students on
average have filled our course. We used an OVE (described in
section 3.1 Platform) in a classroom setting during students’
enrollment in the UWYO HSI program and then students continued
working remotely in the OVE from home for the remainder of the
summer. Each of our classes were scheduled for four out of five
days in a week, for a duration of three weeks on campus. The
duration of the class was about 2.5 hours each class. During most
class days, students worked in the OVEs on standard desktop
computers in the classroom. On one of those four days, each week
we took them on a field trip. Field trips that we included in our
course were the UWYO 3D Shell Visualization Center, 3-D
Interaction and Agents Research Lab, and the UW Art Museum.
Students were exposed to their creations in an immersive display
during three separate occasions, once each week. More details on
what students did during their time in class are provided in section
4.1.1 Classroom Activities. On the first day, students were given
the pre-questionnaire as the very first task. Then we spent that day
learning the basics of the OVE platform. During the last week,
students completed the last assignment (described in sections 3.2
and 3.3). Virtual sculptures were exhibited in the OVE virtual
gallery and visitors are invited to the special event through
immersive displays. The last task of the last class day, students
completed the post-questionnaire and exam on the programming
concepts. Students had the option to opt out of any or all of the pre-
questionnaire, post- questionnaire, and exam. After the three-week
period at UWYO HSI, students return home but are provided online
access to the space in the online virtual environment designated for
this project outside of class so that they will be encouraged to
explore their creativity and programming skills outside of class in
collaboration with other students.

4.1.1 Classroom Activities

We structured the scheduled class time of 2.5 hours with a
presentation of the material orally and visually by one of the
instructors in the first 30 minutes and for the remaining of the time
students design and program their projects. During each design and
program work periods, the students spent time working in the
virtual environment on the classroom computers, not in an
immersive display. To solve the problems presented, students
created 3-dimmensional (3D) graphical representations (objects)
and wrote computer programs that activate/control each objects’
behaviors within the OVE. During the design and program work
periods, two instructors and two undergraduate student helpers
walked around the room providing one-on-one support. Both
instructors were skilled in computer science. One of the instructors
was also skilled in fine arts. At least a graduate or undergraduate
student from both fields should be involved if an instructor from
both fields is not possible. The duration of a project lasts for about
one to two class days and we move on to the next problem. If we
noticed students needed more time, an additional half-to-full class
day would be used as general work time so students could spend
more time on their art projects, individually or in small groups of
students. These days gave us more opportunities to work with the
students one on one, so we can help them succeed at their projects.
In a typical day, the students were taught a new programming
technique or basic art concept, taught about a new aspect of art,

worked on a project to apply the new techniques to an art project,
and shared their artwork with the other students in the class.
Students also offered solutions to assist their peers and worked in
pairs or small groups of students (this was optional and not forced
through the classroom activities). One week, students experienced
their individual creations immersed in the OVE through a head-
mounted display with wide-area tracking offering the ability to
naturally walk around a 20’x20’ space. Another week, students
experienced their individual creations immersed in a CAVE facility
also with wide-area tracking in the open space of the CAVE. In the
last week, we brought two head-mounted displays to the classroom
where they could explore the OVE art gallery containing each
other’s work using the classroom computers and taking turns using
those immersive displays with using a keyboard for navigation
through the environment. Through these immersive experiences,
students could further their embodied learning by experiencing
their 3D sculptures relative to their own bodies. While it was not
feasible at the time, for the students work the entire time in head-
mounted displays, in future courses, we can investigate more
immersive exposure in the classroom setting using this teaching
and learning approach. When students returned home from the
program, they used desktops and low-cost portable virtual reality
viewers, such as a Google Cardboard to continue designing and
interacting with an instructor and students. Another example of
how OVEs can be used to enhance peer support is to connect with
other networked classes. During one year, we connected to
Clemson’s Palmetto Island group, who was using the platform to
teach computer science concepts through single object lessons with
note cards in the environment providing tutorial instructions. One
of their objectives is similar in that the purpose of their program is
to engage students and raise awareness in Computer Science [23].
Our course is different because we use visual art and design
pedagogy to drive the lesson-plans. Despite the differences in
curriculum and assignments, students from our group could engage
with each other with students from the Palmetto Island group,
participate in a fun scavenger hunt together within the virtual
environment, and share programming tips fostering peer support.

5 RESULTS

The UWYO Institutional Review Board approved data collection
activities and only used data which we had student consent or
appropriate parental consent and student assent, depending on age.
We used an analysis of variance (ANOVA) to test difference of
means among the data. For all ANOVAs, we used a p=0.05 for
significance. Each ANOVA passed the Mauchly’s Sphericity test,
where variances of differences between possible pairs were equal.

5.1 Participants
Each course enrolled a unique set of students about 14 to 18
students, however data collection for the pre- and post-
questionnaires, and tests were voluntary. We have collected data
from 57 students over three courses. Course A is the traditional
course while course B we started experimenting a little with Art
Pedagogy Driven model. In course C, we had fully implemented a
curriculum of Art Pedagogy Driven model. For the course where
we used generative art computational problems, we had data for 14
students (Males=7, Females=7). For the course which we used
generative art computational problems, we had data for 14 students
(Males=7, Females=7). During the other three courses we collected
data from 16 students (Males=6, Females= 7, Not Reported= 3), 12
students (Males=3, Females=6, Not Reported=3), and 14 students
(Males= 5, Females=7, Not Reported=2). All students reported that
they were Juniors in High School. The mean number of computing
courses reported was 1.81 (SD=1.35).

1591

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 21,2022 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

5.2 Actual Knowledge Gained
To assess actual knowledge gained, students completed a quiz
relating to scripting and computational topics on the last day of the
course for all three courses. There were two parts. In part one,
students described what each code snippet did. Some questions
featured code specific to Linden Scripting Language while others
focused on general computing concepts, such as if/else statements
and loops. In part two, we collected qualitative data on how well
students knew the Linden Scripting Language where snippets of
code were written incorrectly, then students had to identify what
was missing or incorrect. These tests were optional and one class
was not administered the test. The results of a one-way ANOVA
revealed a significant difference for the performance on test scores
F(1,37)= 11.83, p=0.002. The courses where we used our Visual
Design Problem-based Pedagogy courses yielded significantly
higher test scores (M=76.89%, SD=14.48) than the course that used
generative art computational problems (M= 55.87%, SD=22.23). A
multivariate ANOVA was used to compare test scores among the
courses. The ANOVA revealed a main effect of course type,
F(2,30)= 5.91, p=0.007, n2= 0.28, power= 0.841 (Figure 5). There
was no main effect of gender found and no interaction effect of
course type by gender found. A LSD post-hoc test revealed that the
two Art Pedagogy-Driven courses produced higher knowledge-
based test scores than the traditional course. Specifically, course C
was found to be significantly higher (M=81.73%, SD=18.21) than
course A (M=55.80%, SD=22.23), p=0.003. While some
improvement in course B (M=66.14%, SD= 14.32), there was not
a significant difference found. In summary, students’ actual
programming knowledge and comprehension (specifically of
state_entry, beginning a script, positional/rotational commands,
property manipulators such as color, random number generator,
and vectors), understanding (i.e. differentiating when an end
bracket was missing, if a parameter name was missing, or for
vectors), significantly increased from pre- to post-course activities
during the Visual-Design Problem-based Pedagogy courses B and
C than course A, using traditional CS problems.

Figure 5: Test Score Means by Course and Gender Type.

5.3 Perceived Knowledge Gained
To assess perceived knowledge gained, students rated their
confidence on knowledge of terminology and were quizzed on
specific content. We collected this data using a 5-point Likert scale
from 1=not confident at all and 5=very confident. There was also
an option to select 0 to indicate not applicable or never heard of the
term. The topics included: variables, loops, conditional statements,
compilers, recursion, random number generators, object oriented
programming, functions, parameters, software, hardware, input
device, output device, variable declaration, initialization, booleans,
execution, iteration, syntax, comments, debugging, arrays, and
code errors. A Repeated Measures ANOVA revealed a main effect
of perceived knowledge by course type for each topic, as follows:
• Debugging: F(2,38)=3.15, p=0.05, n2=0.142 , power=0.570,

where perceived knowledge of Debugging was significantly higher
for Courses B from pre (M=0.55, SD=0.82) to post (M=1.45,
SD=1.22) and Course C from pre (M=1.64, SD=1.69) to post
(M=2.71, SD=1.60) than Course A from pre (M=1.25, SD= 1.13)
to post (M=1.87, SD=1.41).
• Arrays: F(2,38)=3.40, p=0.044, n2=0.152 , power=0.604,
where perceived knowledge of Arrays was significantly higher for
Courses C from pre (M=0.43, SD=1.45) to post (M=2.50, SD=1.79)
and Course B from pre (M=0.45, SD=0.69) to post (M=1.36,
SD=1.12) than Course A from pre (M=0.69, SD= 1.01) to post
(M=1.38, SD=1.46).
• Loops: F(2,38)=4.82, p=0.014, n2=0.216 , power=0.763,
where course B had the most significant increase from pre
(M=1.38, SD=0.83) to post (M=2.82, SD=1.08) and course C also
had a significant increase from pre (M=1.50, SD=1.65) to post
(M=2.21, SD=1.48).
• Conditions (programming): F(2,38)=4.23,p=0.022, n2=0.182,
power=0.707, where course B had the most significant increase
from pre (M=0.64, SD=1.03) to post (M=2.91, SD=1.04) and
course C also had a significant increase from pre (M=1.50,
SD=1.74) to post (M=2.57, SD=1.45). Course A (traditional) only
increased very slightly from pre (M=2.00, SD=2.03) to post
(M=2.56, SD=1.50).
• Hardware: F(2,38)=3.75, p=0.033, n2=0.165, power=0.650,
where course B had the most significant increase from pre
(M=0.82, SD=1.08) to post (M=2.45, SD=1.30) and course C also
had a significant increase from pre (M=1.57, SD=1.09) to post
(M=2.29, SD=1.20). Course A (traditional) only increased very
slightly from pre (M=2.06, SD=1.34) to post (M=2.37, SD=1.20).
 A Repeated Measures ANOVA revealed a main effect of
perceived knowledge by gender type for each topic as follows:
Booleans: F(1,35)=5.82, p=0.021, n2=0.143, power=0.650, where
females perceived knowledge of Booleans significantly increased
from pre(M=0.40, SD=0.68) to post(M=1.20, SD=1.32) more than
males from pre (M=1.33, SD=1.65) to post (M=2.00, SD=1.38).
 In summary, perceived knowledge (of debugging, arrays, loops,
conditions, and hardware) significantly increased from pre- to
post-course activities in Visual-Design Problem-based Pedagogy
courses B and C than in course A, using traditional CS problems.

5.4 Student Comments and Feedback
The following are student comments on engagement and learning:
• “I didn’t know a lot [about computer science and

programming] and this class helped me learn a lot more”
• “I actually know how to make a simple code now. I never

thought I’d learn how to do that”
• “I would like to keep the combination of 3D art and coding”
• “learn all the cool things that could be done in a virtual world”
• “we got to use our imaginations”, “I am better at scripts”
• “I have become a little more comfortable with computers in

general and was able to have a little fun with my creativity”
• “experimenting to find out just what you are capable of doing”

5.5 Empirical Results
In the Visual Design Problem-based Pedagogy courses, students
explored various programming concepts to achieve their desired
visual designs. Students planned their creations, then identified the
programming concepts to achieve their desired affects. Students
would investigate other concepts to try to achieve the desired effect.
We observed three major observations: 1) were more engaged, 2)
were more creative in their solutions, and ultimately 3) who
independently sought to learn more additional computer
programming concepts on their own. Students were more engaged
and enjoyed their tasks more. Students were tending to skip their
break sessions, come back earlier or stay later after class to
complete their tasks. When teaching lessons directly related to

1592

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 21,2022 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

programming concepts, students were less creative in their
resulting visual elements and code. For each assignment, students’
code was very close to a single solution, with only slight variation
from the examples. For Visual Design Problem-based Pedagogy
lessons, students exhibited more creativity in their resulting visual
elements. Most importantly, the code produced by students was
more sophisticated and complex (added programming elements
that were not covered in the lesson which they learned on their own
through the wiki pages, online tutorials, and forums). There was an
increase in variation across variable naming conventions, code
ordering structure, and algorithmic solutions.

6 DISCUSSION AND CONCLUSION

Results on measured knowledge gained show that the curriculum
that incorporates the use of problem solving for visual design first,
where programming is used to solve those problems, helps to
improve knowledge on programming concepts for students of both
genders. The results of measured computer programming
knowledge gained is a direct result of the presence of self-directed
learning of computer programming concepts. It has also been
detected by observations of students’ actions and behaviors. Self-
directed learning of programming has been encouraged
purposefully through the pursuit of trying to achieve desired visual
effects. The desired visual effects are determined as a solution to
address a problem relating to visual design principles. Therefore,
we can deduct that by using a Visual Design Problem-based
Pedagogy as a means for encouraging self-directed learning, can
lead to more advancement of knowledge in computer programming
concepts. This may extend further to other STEM fields but as a
limitation to this study and the procedures used, would need to be
investigated in the future. Results on perceived knowledge gained,
as well as the positive comments deriving from students’ opinions
about the method, tell us that through an experience such as this for
high school students, regardless of gender, increases the confidence
of students on computer programming concepts.
 This paper presents an interesting use of Visual Design
Problem-based Pedagogy to drive experiential learning and
embodied learning for computer science knowledge acquisition.
Using this method, students learned more about introductory
computer programming concepts. Additionally, we found through
observations that students were more engaged, enjoyed completing
their tasks, and took charge of their own learning of new concepts.
When students’ goals are driven by creativity and experiential
learning, students learned more about computing even if the tasks
were challenging. The results of this work may assist with other
educators wanting to conduct similar activities. Using online virtual
environments provides students with the capability to connect with
other students online for collaboration and peer support to further
assist with learning computer science concepts. Our hope is that
this paper will serve to share our experiences and encourage other
educators to develop and host these types of courses. While our
course was delivered to high school students, it may be appropriate
for undergraduate introductory level courses and potentially (with
modification) to middle school students. In that respect, as the
community grows, we can blur our geospatial borders and learning
through peer collaboration and support will increase.

REFERENCES

[1] Barker, Lecia J., Kathy Garvin-Doxas, and Eric Roberts. "What can
computer science learn from a fine arts approach to teaching?." ACM
SIGCSE Bulletin. Vol. 37. No. 1. ACM, 2005.

[2] Brunvand, Erik. "Arts/tech collaboration with embedded systems and
kinetic art." ACM SIGGRAPH 2013 Talks. ACM, 2013.

[3] Schmidhuber, Jürgen. "Developmental robotics, optimal artificial
curiosity, creativity, music, and the fine arts." Connection Science
18.2 (2006): 173-187.

[4] Bell, Mark W. "Toward a Definition of "Virtual Worlds"". Journal of
Virtual Worlds Research (2008): 1 (1).

[5] Cruz-Neira, Carolina, Daniel J. Sandin, Thomas A. DeFanti, Robert
V. Kenyon, and John C. Hart. "The CAVE: audio visual experience
automatic virtual environment." Communications of the ACM 35, no.
6 (1992): 64-73.

[6] Springer, Leonard, Mary Elizabeth Stanne, and Samuel S. Donovan.
"Effects of small-group learning on undergraduates in science,
mathematics, engineering, and technology: A meta-analysis." Review
of educational research 69.1 (1999): 21-51.

[7] Hendricson, William D., et al. "Educational strategies associated with
development of problem-solving, critical thinking, and self-directed
learning." Journal of dental education 70.9 (2006):925-36.

[8] Deek, Fadi P., Howard Kimmel, and James A. McHugh. "Pedagogical
changes in the delivery of the first-course in computer science:
Problem solving, then programming." Journal of Engineering
Education 87.3 (1998): 313.

[9] Williams, Laurie, Eric Wiebe, Kai Yang, Miriam Ferzli, and Carol
Miller. “In Support of Pair Programming in the Introductory
Computer Science Course.” Computer Science Education Vol. 12 ,
Iss. 3, (2002).

[10] Lieberman, Debra A., and Marcia C. Linn. "Learning to learn
revisited: Computers and the development of self-directed learning
skills." Journal of research on computing in education 23.3 (1991).

[11] LeJeune, Noel F. Problem-based learning instruction versus
traditional instruction on self-directed learning, motivation, and
grades of undergraduate computer science students. 2002.

[12] Magnussen, Lois, Dianne Ishida, and Joanne Itano. "The impact of the
use of inquiry-based learning as a teaching methodology on the
development of critical thinking." Journal of Nursing Education 39.8
(2000): 360-364.

[13] Gormally, Cara, et al. "Effects of inquiry-based learning on students’
science literacy skills and confidence." International journal for the
scholarship of teaching and learning 3.2 (2009): 16.

[14] Savery, John R. "Overview of problem-based learning: Definitions
and distinctions." Essential readings in problem-based learning:
Exploring and extending the legacy of Howard S. Barrows (2015).

[15] Kolb, David A., Richard E. Boyatzis, and Charalampos Mainemelis.
"Experiential learning theory: Previous research and new directions."
Perspectives on thinking,learning, and cognitive styles (2001):227-47.

[16] Dickey, Michele D. "Three dimensional virtual worlds and distance
learning: two case studies of Active Worlds as a medium for distance
education." British journal of educational technology 36, no. 3 (2005).

[17] Baker, Suzanne C., Ryan K. Wentz, and Madison M. Woods. "Using
virtual worlds in education: Second Life® as an educational tool."
Teaching of Psychology 36, no. 1 (2009): 59-64.

[18] Warburton, Steven. "Second Life in higher education: Assessing the
potential for and the barriers to deploying virtual worlds in learning
and teaching." British Journal of Educational Technology 40, no. 3
(2009): 414-426.

[19] Wiecha, John, Robin Heyden, Elliot Sternthal, and Mario Merialdi.
"Learning in a virtual world: experience with using second life for
medical education." Journal of medical Internet research 12, 1 (2010).

[20] Patton, Ryan M. "Games as an artistic medium: Investigating
complexity thinking in game-based art pedagogy." Studies in Art
Education 55, no. 1 (2013): 35-50.

[21] Ellmers, Grant. "Reflection and graphic design pedagogy: Developing
a reflective framework to enhance learning in a graphic design tertiary
environment." (2006).

[22] Ellmers, Grant, I. Brown, and S. Bennett. "Graphic design pedagogy:
Employing reflection to support the articulation of knowledge and
learning from the design experience." In Proc of the Conference on
Experiential Method, Knowledge and Methodology. 2009.

[23] Green, Brittany, Charles Jones, Larry F. Hodges, and Kaylee Nichols.
"Palmetto Island: Developing Computer Science Awareness in
Middle and High School Students."

1593

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 21,2022 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

